ЧАСТЬ II. ИНФОРМИРОВАННАЯ ВСЕЛЕННАЯ
Вечные вопросы и новые ответы, даваемые целостной теорией всего

5. Происхождение и судьба жизни и Вселенной

Жизнь на Земле и во Вселенной

Теперь мы переходим к следующей группе важных вопросов: вопросы, которые важны, но чуть менее значимы. Это вопросы о происхождении и судьбе жизни на Земле и в космосе. Первый вопрос касается распространенности жизни. Есть ли жизнь где- либо еще во Вселенной, кроме нашей планеты?

У нас есть все причины полагать, что жизнь, которую мы наблюдаем на Земле, не ограничивается нашей планетой. Жизнь возникла здесь примерно четыре миллиарда лет назад, и с тех пор она непрестанно развивалась, создавая все новые и новые сложные организмы, составляющие все более и более сложные экологические ниши. У нас нет причин сомневаться в том, что, где бы ни присутствовали условия, подходящие для жизни, физическая, физико-химическая, биологическая и экологическая самоорганизация обязательно произойдет. И у нас есть причины верить, что условия, подходящие для эволюции жизни, присутствуют во многих местах. Астрономический спектральный анализ показал поразительное однообразие состава материи звезд и, следовательно, планет этих звезд. Чаще всего обнаруживают водород, гелий, кислород, азот и углерод. Из них водород, кислород, азот и углерод являются базовыми составляющими жизни. Там, где они существуют в определенном соотношении, при наличии энергии начинается цепь реакций, в результате чего появляются сложные химические соединения. Активные звезды излучают такую энергию. Она существует в форме ультрафиолетового излучения, электрических разрядов, ионизирующего излучения и тепла.

Примерно четыре миллиарда лет назад в верхних слоях атмосферы молодой Земли произошли фотохимические реакции, продукты которых, благодаря атмосферной конвекции, попали на поверхность нашей планеты. Электрические разряды вблизи поверхности способствовали тому, что эти продукты осели в древние океаны, где извержения вулканов продолжили снабжать их энергией. Объединение энергии Солнца и энергии, находящейся под поверхностью воды, запустило цепь реакций, конечными продуктами которых стали органические соединения. С некоторыми вариациями такой же процесс построения систем без сомнения разворачивается и на других планетах. Бесчисленные эксперименты, пионерами в которых стали палеобиолог К. Поннамперума и другие, показали, что, когда условия, близкие к тем, что существовали на Земле, симулируются в лаборатории, возникают элементы, образующие основу земной жизни.

Должны быть и другие планеты, условия на которых близки к земным. В нашей Вселенной более 1020 звезд, каждая из которых выделяет энергию в течение своей активной фазы. Когда такая энергия достигает планет, она способна запускать фото-химические реакции, необходимые для жизни. Конечно, не все звезды находятся в активной фазе, и не на всех из них есть планеты с необходимыми физическими условиями, необходимого размера и на необходимом расстоянии.

Сколько существует планет, на которых возможна жизнь? Есть разные предположения. Заняв консервативную позицию, астроном из Гарварда Харлоу Шапли изначально предположил, что только у одной звезды из тысячи есть планеты, и только у одной из тысячи таких имеющих планеты звезд есть планета, расположенная на подходящем расстоянии от нее. Затем он предположил, что только одна из тысячи расположенных на подходящем расстоянии планет достаточно велика, чтобы удерживать свою атмосферу, и только одна из тысячи планет на подходящем расстоянии и подходящего размера имеет химический состав, способный поддерживать жизнь. И даже согласно вычислениям Шапли, в космосе должно быть как минимум 100 миллионов планет, способных поддерживать жизнь.

Астроном Су-Шу Хуан предложил даже более оптимистичную цифру. Он рассмотрел временные масштабы звездной и биологической эволюции, пригодные для жизни зоны планет и соответствующие динамические факторы и пришел к выводу, что не менее 5% всех солнечных систем во Вселенной должны быть пригодны для жизни. Это значит не 100 миллионов, а 100 миллиардов планет. Харрисон Браун озвучил еще бо«льшую цифру. Он исследовал вероятность того, что рядом с видимыми нам звездами существует много напоминающих планеты объектов, которых мы не видим, — возможно, 60 таких объектов, размерами превышающих Марс. В этом случае почти у каждой видимой звезды есть частично и полностью невидимая система планет. Браун подсчитал, что в таком случае только в нашей Галактике существует не менее 100 миллиардов таких систем — а ведь во Вселенной 100 миллиардов галактик! Если он прав, жизнь в космосе гораздо более распространена, чем считалось прежде.

Эту оптимистичную оценку подтвердило открытие, сделанное с помощью космического телескопа «Хаббл» в декабре 2003 года. Космический телескоп смог измерить очень странный объект в древней части нашей галактики. Не было известно, является ли этот объект планетой или коричневым карликом, но он оказался планетой с массой, в 2,5 раза превышающей массу Юпитера. Возраст планеты оценили в 13 миллиардов лет, то есть она должна была сформироваться, когда Вселенная существовала всего один миллиард лет.

Планеты продолжают образовываться — быстро и в большом количестве — и по сей день. В мае 2004 года космический телескоп «Спитцер» был нацелен на «звездную детскую» Вселенной, известную как RCW 49, и сразу же обнаружил 300 новорожденных звезд, некоторым из них было не больше миллиона лет. При ближайшем рассмотрении двух звезд выяснилось, что вокруг них есть размытые диски пыли и газа. Астрономы предположили, что все 300 звезд могут иметь такие диски. Это удивительное открытие. Если планеты образуются вокруг столь многих звезд, причем так быстро, их должно быть гораздо больше, чем считалось прежде.

Если жизнь возможна в столь многих уголках Вселенной, не существует ли и разумная жизнь и даже технологические цивилизации? Такая вероятность впервые была рассмотрена Фрэнком Дрейком в 1960 году. Известное уравнение Дрейка подсчитывает статистическую вероятность существования в нашей Галактике звезд с планетами; планет со средой, способной поддерживать жизнь; жизни на пригодных для жизни планетах и развитой технологической цивилизации, созданной разумной жизнью, которая развилась на этих планетах. Дрейк выяснил, что при огромном количестве звезд в нашей Галактике есть вероятность существования 10 тысяч технологических цивилизаций только в Галактике Млечный Путь.

Уравнение Дрейка было доработано Карлом Саганом с коллегами в 1979 году. Согласно их подсчетам, в нашей Галактике могут существовать не 10 тысяч, а до одного миллиона разумных цивилизаций. В конце 1990-х годов Роберт Таормина применил эти уравнения к области в одной сотне световых лет от Земли и выяснил, что более 8 таких цивилизаций должны находиться невдалеке от нас.

За последние 15 лет астрономы изучили 1200 подобных солнцу звезд вблизи нашей планеты и обнаружили более сотни планет, находящихся вне Солнечной системы. Об одном особенно многообещающем открытии было объявлено в июне 2002 года: о планетарной системе, известной как ТХ Рака. Она находится недалеко от нас — на расстоянии всего в 41 световой год. В ней есть планета, которая напоминает Юпитер массой и орбитой. Вычисления показывают, что в ТХ Рака могут существовать и каменистые планеты, подобные Марсу, Венере и Земле. На многих, если не на большинстве таких планет, в процессе эволюции вполне могла появиться жизнь.

Однако это исключительное открытие. В большей части солнечных систем, расположенных неподалеку от нас, планеты вращаются по очень вытянутым орбитам, то удаляясь слишком далеко от своего солнца, то приближаясь слишком близко.

Хотя в этой Галактике и вообще в космосе планет очень много, те, что способны поддерживать более развитые формы жизни, относительно редки. По мнению Питера Варда, уровень радиации и тепла настолько высок, что единственные формы жизни, которые могут на них существовать, — это бактерии глубоко в почве. Шансы против развития технологической цивилизации астрономические. Но даже если планеты с подходящим составом, на подходящем расстоянии от звезды и имеющие подходящую орбиту редки во Вселенной, существование развитых цивилизаций нельзя исключить. Существует астрономическое число звезд и планет, поэтому даже если все шансы и против таких цивилизаций, они не исключают их существования, а просто показывают, что они относительно редки.

В свете открытия, что планеты уже начали формироваться через миллиард лет после рождения Вселенной, оценки распространенности жизни во Вселенной должны быть пересмотрены. Даже если пригодные для жизни планеты редки и эволюция на них движется медленно, в подходящих условиях высшие формы жизни могли зародиться не некоторых планетах. Таким образом, внеземные цивилизации вполне могут существовать в этой Вселенной. И некоторые из этих цивилизаций могут быть более развитыми, чем цивилизация на Земле: в нашей области Галактики звезды, у которых могут быть пригодные для жизни планеты, в среднем на один миллиард лет старше Солнца. Жизнь и цивилизация могли возникнуть в этой Галактике на миллиард и более лет раньше, чем на Земле.

Необходимо добавить еще один фактор в оценки распространенности жизни и цивилизаций в космосе — фактор информации. В информированной Вселенной существование жизни и развитых цивилизаций гораздо более вероятно, чем в обычной Вселенной. Это так потому, что через а-поле жизнь в одном месте информирует и ускоряет эволюцию жизни в других местах. Эволюция никогда не начинается на пустом месте и никогда не является следствием счастливой случайности, когда мутации приводят к появлению организмов, которые неожиданно оказываются жизнеспособными в изменяющейся среде.

Эволюция жизни на Земле не полагалась на случайные мутации и не требовала физического внесения организмов или протоорганизмов из другой точки Солнечной системы, как предполагают теории биологического заселения. Химический суп, из которого возникли первые организмы, обладал информацией, заключенной в следах внеземной жизни. Жизнь на Землю была привнесена не биологически, а информационно — и ее эволюция информируется жизнью, где бы во Вселенной она ни существовала.

Может ли человеческий мозг улавливать внеземную информацию? Так называемые примитивные люди обладают замечательной способностью чувствовать других людей и их среду не только при помощи глаз и ушей. Но мы, предположительно цивилизованные люди, отказались от этой способности, когда начали полагаться на свои органы чувств для получения информации о мире вокруг нас. Однако как показывает наша способность видеть сны, мечтать и получать образы и впечатления в медитативном и других измененных состояниях сознания (когда цензура, подавляющая «аномальную» информацию, ослабляется), наша способность получать доступ к разнообразной информации не была потеряна.

В этой критической точке эволюции человеческой цивилизации особенно важно развивать давно забытую способность получать доступ к ин-формации, сохраняемой в а-поле. Мы не только сблизимся друг с другом и природой, мы можем также понять, как справиться с проблемами нашей технологически развитой, но бесконтрольной цивилизации. В итоге, даже если технологические цивилизации статистически редки, они, вероятно, существуют в этой Галактике и в сотне миллиардов других галактик нашей Вселенной, некоторые из них — на планетах, где жизнь развилась за миллионы, если не миллиарды лет до того, как она появилась на Земле. Если эти цивилизации создали эффективную технологию, они в какой-то момент встретились с такими же затруднениями, связанными с поиском способов жизни без нанесения вреда своей планете.

Цивилизации, которые встретились с такими затруднениями, нашли способы достичь состояния устойчивости. Какие способы они обнаружили? Ответ должен заключаться в а-поле. Способность достигать его станет нашим преимуществом: кроме внутренней ценности знания того, что мы не одни, мы могли бы получить представления о планетарной цивилизации, существующей в гармонии со своей биосферой. Это могло бы обеспечить переход от следования пути проб и ошибок интуитивной мудрости, ведущей к динамически гармоничным устойчивым условиям, которых более зрелые цивилизации уже достигли на своих планетах.


Страницы:
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] | 15 | [16] [17]
[18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] »»»»

Яндекс.Метрика